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Abstract: There is an urgent need to develop viable, renewable, sustainable energy systems that can
reduce global dependence on fossil fuel sources of energy. Biofuels such as ethanol are being utilized
as blends in surface transportation fuels and have the potential to improve sustainability and reduce
greenhouse gas emissions in the short term. Bioethanol, the most widely used liquid biofuel, is cur-
rently produced by converting sugars or starches from feed crops into ethanol. Use of this fuel source
displaces and draws water consumption away from agricultural crops, increases soil erosion by shift-
ing land from perennial grasses to annual crops, and increases use of fertilizers and insecticides. In
contrast, bioethanol made from lignocellulosic biomass feedstocks does not have these limitations
and in addition, offers a larger resource base: the amount of cellulosic material available for poten-
tial use vastly outweighs the amount of available starch-based feedstock. Therefore, bioethanol from
lighocellulosic biomass has attracted considerable interest from biofuel developers. This review is an
update of some developments to optimize cellulose extraction from feedstock crops and to improve
crop vields and logistics. It concludes that agricultural and forestry systems that incorporate lignocel-
lulosic biomass crops can be designed for improved ecological function and energy use efficiency.
Development of crops that have both desirable cell-wall traits and high biomass productivity under
sustainable low-input conditions can significantly enhance the economics and efficiency of the con-
version process. Optimizing the logistics of moving feedstock from field or forest to bio-refinery can
significantly reduce costs of using lignocellulosic feedstocks. © 2013 Society of Chemical Industry and
John Wiley & Sons, Ltd
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Review: Lignocellulosic feedstocks

Introduction

our of the great challenges facing humanity during
F the twenty-first century will be energy supply, fresh

water supply, climate change, and global food secu-
rity, and each of these will be influenced by our choice of
biofuels. Global energy demand is rising steeply in both
developed and developing nations and, although new
sources of oil such as the Bakken and Eagle Ford shales in
the USA are currently easing American energy concerns,
they will be short-lived. With each new oil discovery, the
extraction technology becomes increasingly complicated,
expensive, and fraught with environmental issues such as
high water use and increased greenhouse gases (GHGs).
The era of cheap oil is over. Climate change has the poten-
tial to substantially alter global habitats and crop-growing
conditions, and reducing CO, emissions from energy use
is a real and urgent necessity. Thus, we focus on biofuels
derived from non-food biomass, and largely from ligno-
cellulosic materials that can be used in solid (pelleted
material, terrified biomass, etc.), liquid (ethanol or other
alcohols, bio-oils, etc.) or gaseous (e.g. syngas) forms.
Our first efforts at the production of biomass for biofuels
involved feed grain crops but concerns about global food
prices and supply have reoriented efforts toward develop-
ing biofuel crops that will grow on land not generally used
for feed grains or to use plant-based residues not otherwise
used. Currently, biofuels supply about 10% of the world’s
energy, with the bulk of this being low grade biomass used
for cooking in developing countries. However, there are
some examples of very successful biofuel development:
Brazil has produced up to almost 50% of its liquid fuels on
roughly 1% of its agricultural land and, through develop-
ing the resource, has positioned itself extremely well in a
world where fossil fuels are relied on less and less. In the
USA, total renewable fuels are forecast to be 16.55 billion
gallons by 2013 (9.6% of total fuel) and advanced biofuels,
including cellulosic, are forecast to be 2.75 billion gallons
(1.6% of total fuel). Overall, the use of biofuels, especially
the new forms that compete minimally with food produc-
tion, is likely to rise, and the timeline of this transition
suggests that a minimum of 10 million barrels per day
of alternative fuels will be needed within a decade of the
peak in production of conventional crude oil.' There is,
therefore, an urgent need to develop viable, renewable,
and sustainable energy systems that can displace global
dependence on fossil fuel sources of energy. Although
some sectors can manage with other energy sources,
such as solar and wind-produced electricity, sectors such
as the aerospace industry, are absolutely dependent on
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energy-dense liquid fuels. Bioethanol, the most widely
used liquid biofuel, can be utilized as a surface transpor-
tation fuel with little change to current technologies and
has the potential to improve sustainability and reduce
greenhouse gas emissions in the short term. Bioethanol is
currently produced by first-generation technologies con-
verting sugars directly from crops like sugarcane or sugar-
beets, or indirectly through starch from corn, sorghum, or
wheat. Domestic bioethanol production not only decreases
dependence on fossil fuels, the addition of ethanol to gaso-
line also increases the fuel octane rating and results in
cleaner, more complete combustion and lower GHG emis-
sions. Combustion of 10% ethanol-blended gasoline results
in production of 30% less carbon monoxide (CO), 10% less
carbon dioxide (CO,), and 7% less NOx/SOx.2

Generating biofuel from
lignocellulosic biomass

First-generation bioethanol technologies, however, have
several conspicuous limitations. Most notably is their
total reliance on cultivated biomass and the diversion of
feedgrains, such as corn to biofuel production.3 In addi-
tion, there are environmental limitations including draw-
ing water consumption away from land used to produce
food crops, increased soil erosion through the shifting of
land from perennial grasses to annual crops such as corn,
and greater reliance on nitrogen and phosphate fertiliz-
ers, insecticides and herbicides.* ® The strongest argument
against first-generation technologies, however, comes with
the reality of their limited supply and competition with
food. Even if all soybean and corn production in the USA
were dedicated to biofuel production, only 12% of gasoline
demand and 6% of diesel demand would be displaced.’
First-generation technologies are therefore not a solution
to the world’s long-term energy needs. Adopting present
processing technologies to utilize a feedstock that does
not require heavy cultivation and diversion of agricultural
lands and foodstuffs could, however, contribute to a long-
term solution to bioenergy generation and sustainable sup-
ply. Second-generation biofuels are made from lignocel-
lulosic biomass feedstocks using advanced technological
processes that convert cellulose, found in plant structural
elements, to ethanol.'’ The amount of cellulosic material
available for potential use vastly outweighs the amount of
available starch-based substrate. A conservative estimate
is that presently, there are approximately 400 million tons
of biomass available and this number could grow to about
600 million by 2020."" The lignocellulogic feedstocks in
Canada are cereal residues in agricultural regions and
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wood residues in forest regions. The annual availability of
wood infected by pine beetle in Canada is between 9.3 and
12.3 million tonnes, which has the potential to generate
2.8-3.6 billion liters of ethanol per year.!? Every year, more
than 40 million tonnes of lignocellulosic biomass, that is
produced worldwide, is thrown away. There is no competi-
tion with food when these materials are converted to bio-
fuels.!” In the longer term (by 2050) there is the potential
worldwide to produce 130-410 EJ/year of energy, equiva-
lent to 33 to 100% of present energy production, by using
only abandoned agricultural lands, low-productivity lands
and ‘rest lands’" The cost of pre-processing cellulosic
material to generate free glucose, however, is much higher
than that for conventional feedstock, as both mechani-

cal and thermochemical treatments are often required.
However, conversion costs have been falling in recent
years and pilot plants for the production of lignocellulosic
fuels are now being developed. Lignocellulose biomass
can also be used in the generation of heat and electricity
through direct combustion.

Emerging demands for biofuels and bioenergy derived
from biomass are creating new opportunities for redesign-
ing agricultural and forestry systems for improved eco-
logical function and efficient energy use. Technologies to
optimize plant cell wall characteristics and reduce energy
requirements for polysaccharide extraction, breeding, and
agronomic management of feedstock production systems
to increase productivity, and efficient harvesting tech-
niques can all significantly enhance the economics and
efficiency of second-generation biofuels and make them
more cost effective as fossil fuel replacements. What fol-
lows is an update of some developments to optimize cellu-
lose extraction from feedstock crops and to improve crop
yields and harvesting technologies.

Developments in cell wall
degradation

Cellulose and hemicellulose, the main polysaccharides in
lignocellulosic biomass are tightly bound to lignin in the
plant cell wall, which hinders their availability for biocon-
version to bioethanol.”” Overcoming cell wall chemical
and structural properties to extract the desired carbohy-
drates is currently an energy-intensive process. Reducing
the energy requirements through the development of
mechanisms for easier cell wall degradation is critical for
the advancement of biofuel production from lignocellu-
losic biomass.

Separating lignin and cellulose currently requires heat
and acid to remove the lignin and reducing or modifying
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the initial lignin content of the biomass could partially
replace this treatment.!>!® In recent years, genetic modi-
fication of the lignin biosynthesis pathway has received a
lot of attention.'® Transgenic modification of this pathway
to alter lignin composition in trees improved pulping effi-
ciency.” It was observed that transforming poplar plants
with antisense constructs of the lignin synthesis gene
coding for 4-coumarate-CoA ligase (Pt4CL) resulted in
significantly decreased (40%) lignin content.'® However,
negative effects of plant susceptibility to pathogens or
harsh environmental conditions have been anticipated.'®
In crop plants, down-regulation of lignin synthesis genes
improves saccharification efficiency, potentially eliminat-
ing the need for acid pre-treatment.*” Although extensive
research has been conducted in the area of genetic modi-
fication of lignin biosynthesis in trees and other dicots,
it is still not clear how much one can extrapolate from
dicots to grasses.?! Another promising approach would
be to engineer various cellulase/ligninase enzymes into
crop biomass in order to deconstruct the biomass before
bioprocessing and allow it to be more readily hydrolyzed
to produce ethanol.?* Various groups of cellulases, for
example endoglucanases, exoglucanases and B-glucosi-
dases, have been identified and successfully introduced
into plants through genetic engineering to facilitate cel-
lulose degradation. This approach resulted in the expres-
sion of bacterial endoglucanase E1 in model plant species,
such as Arabidopsis and tobacco.”® Specifically, a ther-
mostable endo-1,4-B-D-glucanase E1 from Acidothermus
cellulolyticus was targeted to the apoplast of transgenic
Arabidopsis.** The enzyme has a high temperature (81°C)
optimum and activity is reduced at ambient tempera-
tures. This suggests that the production of such enzymes
in plants is possible by virtue of their limited enzymatic
activity at temperatures compatible with plant growth.
Based on these results, endoglucanase was introduced
into maize and found to be active.”® Conversion of rice
and maize biomass to ethanol was improved by supple-
menting the process with thermostable endoglucanase
expressed in transgenic rice.? Engineering Festuca with
a fungal ferulic acid esterase targeted to the vacuole
resulted in increased digestibility and reduced levels of
cell wall esterified phenolics.”” As heterologous expres-
sion of lignase/endoglucanase is feasible in crop plants,
transformation of feedstocks with similar thermostable
cellulases will also be a useful first step in developing
these crops for cellulosic ethanol production. There will
be a need to ensure that these enzymes are not degraded
by high temperatures during biomass pretreatment
processes.

© 2013 Society of Chemical Industry and John Wiley & Sons, Ltd | Biofuels, Bioprod. Bioref. 7:582-601 (2013); DOI: 10.1002/bbb
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Despite successes with engineering cellulose-degrading
activities into crop plants, it is notable that besides cel-
lulose, lignocellulosic biomass contains large amounts of
hemicelluloses with high contents of five-carbon sugars.
The most common structural polymer found in the hemi-
celluloses is a p-1,4-linked xylose polymer. These polymers
are recalcitrant to hydrolysis by current technologies; how-
ever, hemicellulase enzymes introduced through genetic
engineering can increase overall conversion of hemicel-
lulose by xylanases in a synergistic fashion. Complete
hydrolysis of hemicelluloses could lead to a dramatic
improvement in the fermentative and extraction proc-
esses, which could further improve the bioenergy poten-
tial of lignocellulosic biomass.'>?® Recently, a synthetic,
modified, codon optimized xylanase gene (XynZ) from
Clostridium thermocellum was successfully expressed in
transgenic tobacco plants.” Further increase in perform-
ance of these enzymes and improvement to resulting sugar
yields are vital to improving the efficiency of the lignocel-
lulosic biofuel/bioproduct industry.

Transgenic technologies can also play an important
role in enhancing yield and stress tolerance in biofuel
crops.??” Gene expression can be targeted to the apoplast
and vacuole through a specific signal peptide sequence
such as Prla, from tobacco and potato proteinase inhibi-
tors. Identifying factors that facilitate tolerance and sur-
vival during exposure to drought, freezing, and other abi-
otic and biotic stresses will be vital. Therefore, feedstocks
such as perennial grasses and relevant tree species could
be transformed for more effective weed, disease, and insect
control.*

At the cellular level, a new generation of energy crops
will be characterized by a cellulose and hemicellulose con-
tent that is more accessible and energy efficient to extract.
These crops must also have high biomass production and
produce an optimized amount of fuel per unit of biomass
while maintaining crop production system sustainability
with minimal water and fertilizer inputs.

Perennial grass production systems

Interest in using perennial grass species as energy crops

is fairly recent and relatively little breeding has therefore
been done for this purpose. Breeding programs, conducted
since 1936, focused on improvements for forage purposes
such as better nutritive value which included higher
digestibility, higher concentration of various minerals,

and lower fiber characteristics which are not always use-
ful for bioenergy. Improved forage yield has also been a
common goal, which would be an advantage for bioenergy
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production; however, progress has been slow, due to the
outcrossing nature and genetic complexity of many of the
species. Similarly, agronomic management of perennial
grass species has traditionally centered on forage quality
and productivity. In recent years, however, a concerted
effort has been made to evaluate the genetic by environ-
ment interaction of leading potential biomass species in a
range of field trials across the USA.* Yield gains realized
through improved crop management for biomass have
frequently been of the same magnitude as those targeted
through breeding programs.**~3> Beyond biomass, the
traits targeted in improved grass populations for biofuel
production will depend on the technology pathway used to
1.%¢ For example, lignin composition
and concentration and cellulose and hemicellulose con-
centration are related to ethanol yield in a fermentation
system.37

Warm season (Cy4) grass species, including switchgrass
(Panicum virgatum L.), Miscanthus (Miscanthus x gigan-
teus Greef et Deu. and other species) and prairie cordgrass
(Spartina pectinata Bosc ex Link.), have received the most
attention for biomass improvement through breeding.
Reviews of warm season grasses as biofuel feedstocks,
including information on genetic improvement, have
recently been published.*™*® A number of cool season
grasses have also received interest, including reed canary-
grass (Phalaris arundinacea 1.).*' Below we highlight key
developments in the breeding and agronomic manage-
ment of leading warm season grasses used for biomass
production.

convert biomass to fue

Switchgrass

Switchgrass is native to the prairie region of North
America and has a number of characteristics which are
desirable for use as a bioenergy feedstock, including
high productivity, persistence, and wide adaptation.
Switchgrass has been evaluated for use as a bioenergy crop
in the USA for more than 30 years and its history as the
‘model’ bioenergy crop by the US Department of Energy
has been reviewed.*® There are two distinct ecotypes of
switchgrass, upland (mainly octaploid 2n = 8x = 72) and
lowland (mainly tetraploid 2n = 4x = 36). The two ecotypes

can be distinguished by cytoplasmic (chloroplast DNA)
44,45

36,42

differences and nuclear DNA differences.
Cultivars and existing native populations have not

been found to be highly differentiated and are geneti-

cally diverse providing useful germplasm for selection for

biomass yield.*® Narrow sense heritabilities of biomass

yield have been estimated to be low to medium.**® Yield

© 2013 Society of Chemical Industry and John Wiley & Sons, Ltd | Biofuels, Bioprod. Bioref. 7:582-601 (2013); DOI: 10.1002/bbb 686
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components such as tiller density, tiller mass, and phy-
tomer mass have been positively associated with biomass
yield***” and these components may have higher heritabil-
ity than biomass yield. Development of hybrids to exploit
heterosis has recently been investigated and a method for
hybrid production proposed.” Tetraploid populations
(largely lowland) were identified as different heterotic
groups with F; hybrid populations showing 30-38% high
parent heterosis.” F; hybrids of the lowland ‘Kanlow’ by
upland ‘Summer’ are now in field trials across the USA, in
preparation for expected commercial release.® Genomic
tool development is not as advanced in switchgrass as

in some other crop species, but a transformation project
involving down-regulation of lignin pathway genes in
switchgrass has been initiated.*

Management of switchgrass for biomass is dependent
on location and cultivar selection, with general divisions
evident between upland and lowland ecotypes. Generally,
lowland ecotypes are best suited for warmer, wetter
growth environments and have a longer growing period
than upland ecotypes.” They have different morpholo-
gies, with larger, taller and fewer stems being character-
istic of lowland ecotypes, often leading to higher biomass
yields.** Further, the ecotypes have been shown to dif-
fer in their susceptibility to foliar diseases, such as rust
(Puccinia sp.), necessitating different pest protection strat-
egies depending on cultivar selection.”®>® Ecotypes are
also differentially affected by herbicides,™ harvest man-
agement,® and resource availability® leading to changes
in both biomass yield and biomass composition.®"*2
Numerous studies have evaluated nitrogen fertilizer appli-
cation and harvest management in switchgrass, identify-
ing these management practices as critical to not only crop
productivity but also to the long-term stand persistence
and GHG emission or sequestration. Within ecoregions,
best management practices for nitrogen fertilizer and
harvest time have been developed. In warmer, wetter cli-
mates it will likely be possible to harvest twice per year if
nutrients are not limiting, but in temperate areas a single,
late harvest leads to better fuel quality and more consist-
ent yields.®® A single harvest after senescence minimizes
nitrogen removal in plant biomass, thus reducing the
amount of fertilizer needed for optimal crop growth.®

Miscanthus

Miscanthus is a C4 grass native to East Asia, for which the
main commercial focus has been on a single, high yield-
ing sterile hybrid, Miscanthus x giganteus, a spontaneous
allotriploid hybrid of M. sinensis and M. sacchariflorus
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with 57 chromosomes.®>® There is genetic diversity avail-
able from a large gene pool of different species within
Miscanthus and related species and a high genotypic
variation for cell wall composition among Miscanthus
genotypes has been found.®” There are also major differ-
ences in biomass yield and associated traits among spe-
cies and among ecotypes within species.’” Breeding goals
include both the development of new sterile hybrids which
outyield the existing M.x giganteus hybrid, as well as the
development of adapted, high yielding seed-propagated
cultivars of M. sinensis or M. sacchariflorus, which would
reduce establishment costs, although seeded varieties
must be carefully evaluated for invasive potential.**%°
Variation exists among and within species for first-year
overwintering ability in northern Europe, with genotypes
of M. sinensis and species hybrids being superior.”®”! Low-
density marker maps have been generated in M. sinensis
and potential quantitative trait loci (QTL) identified for
a number of traits associated with biomass production.”
Chloroplast DNA marker loci containing single nucleotide
polymorphisms (SNPs) were identified, which can be used
to differentiate Miscanthus species and identify cytoplas-
mic gene pools.”?

Miscanthus has only been grown for biomass in North
America for a short time. The first published field trials
of Miscanthus in the USA compared it to switchgrass in
llinois, and found it to yield at least twice as much bio-
mass.” Recent years have seen an explosion of Miscanthus
research in the USA, following decades of experience with
it in Europe.”>’® The comparative yield advantage of M.
x giganteus increases as climates become cooler, making
it likely the most productive bioenergy crop available for
cool, temperate regions.””’® So far, the biggest barriers to
Miscanthus adoption revolve around propagation, plant-
ing, and winter survival of the sterile clone M. x giganteus.
Propagule (rhizome) costs are high, frontloading M. x
giganteus production costs; however, if M. x giganteus
rhizome costs in the USA drop to prices seen in Europe,
it is cost-competitive with other biomass feedstocks, or
cheaper.” The crop is especially sensitive during the first
winter after planting and becomes increasingly resilient
as stands mature. Because vegetative planting material is
so expensive, great care is typically given to establishing
stands, with inputs similar to those seen in annual grain
crops.®? Following the establishment year, inputs are very
low, giving it favourable economic and greenhouse gas
budgets.® Like switchgrass, no clear recommendation exists
for nitrogen fertility in M. x giganteus given its inconsist-
ent response to N fertilizer.®? Generally, nutrient removal is
quite low if the crop is harvested after senescence.®*

2
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Prairie cordgrass

Prairie cordgrass is native to North America and is of
interest for biomass production because of its high pro-
ductivity and adaptation to marginal land that is subject
to salinity and water fluctuations.®” Breeding and genetic
studies for this species are limited. Populations are either
tetraploid (2n = 4x = 40) or octoploid (2n = 8x = 80) and
recently a sterile hexaploid plant was identified. High
variation in biomass among seven natural populations in
South Dakota, USA suggested that promising strains could
be selected directly from these populations.*®

Very little scientific research has been conducted on
prairie cordgrass management for biomass. Research has
shown that the crop does not easily produce or grow from
seed, and vegetative propagation, similar to M.x gigan-
teus, may prove a more reliable means of establishment.®*
Fertility and harvest requirements are not yet clear.

Management of perennial grasses for bioenergy will
require the same thoughtful and logical development
as was given to annual crops during the first Green
Revolution. The heterogeneous nature of landscapes will
require site-specific research and more management-
intensive cropping practices, i.e., the inputs of resources
such as fertilizer and fossil fuels may be reduced, but the
need for informed, involved land managers will increase as
we seek to harvest both fuel and food from crop land.

Woody production systems

Feedstock development

In the 2006 US Department of Energy’s roadmap publica-
tion entitled Breaking the Biological Barriers to Cellulosic
Ethanol, several forest trees species were identified as
potential feedstock sources for cellulosic ethanol produc-
tion. These included hybrid poplars, willows, silver maple,
black locust, sycamore, sweetgum, and eucalyptus. In the
Northern Hemisphere, poplar has been given the most
attention and is the target of large breeding programs and
plantations for solid wood and pulp and paper produc-
tion. Hybrid poplars can be grown in many regions of the
USA and Canada but to date the amount of land in indus-
trial plantations is still quite limited. This could change

if genetic improvement and/or conversion technologies
develop sufficiently to produce a sustainable and economic
feedstock. Three general approaches to feedstock improve-
ment are being pursued: (i) Traditional hybrid breeding,
(ii) Genomics-assisted breeding and (iii) Transgenic modi-
fication.® Traditional hybrid breeding involves making
inter-specific crosses and selecting superior F, individuals.

B Coulman et al.

Some very successful hybrids include Populus x canadensis
(deltoides x nigra), P. x generosa (trichocarpa x deltoides),
P. x tomentosa (alba x tremula) and P. x wettsteinii (trem-
ula x tremuloides). These hybrids are now being further
improved through genomics-assisted breeding®” and trans-
genic modification.®® Genomics-assisted breeding involves
making selections based on the genotype of an individual
rather than its phenotype. In practice, a combined geno-
typic and phenotypic selection strategy is often employed.
Discovery of genetic markers by phenotypic trait relation-
ships is the first step and two general approaches have
been used: (i) QTL rnapping87 and (ii) association map-
ping.®® The earlier QTL approach lacked high-resolution
mapping of markers to genes affecting phenotypes

and did not lead to application in breeding programs.

The association mapping approach has delivered high-
resolution marker x trait relationships and is currently
being implemented into breeding programs, including
programs seeking to develop poplar hybrids as biofuel
feedstocks. The final genetic improvement approach is to
produce genetically modified varieties through transgenic
technology. Genetic transformation technology was first
developed in a few poplar varieties back in the 1980s using
the Agrobacterium system and has been used to develop
transgenic varieties of many kinds, including those with
genes modified to produce altered wood chemistry proper-
ties.? The transgenic approach holds great potential but

is currently limited in application in the USA and Canada
due to regulatory restrictions on deployment of genetically
modified (GM) trees. Furthermore, many growers desire
FSC (Forest Stewardship Council) certification and would
not deploy GM trees even if they were available.

Production systems

Woody perennial production systems are expected to have
positive effects on soil properties, biodiversity, energy bal-
ance, GHG mitigation, and carbon footprint compared

to arable crops.”® Fast-growing willows can be harvested
in three to ten year cycles,”” and hybrid poplars are cut
from twelve to twenty-five years after planting,’® although
shorter rotation coppicing systems also exist. Both crops
have excellent potential for simultaneous heat and power
generation through burning of wood pellets/biomass, but
are not yet good candidates for bioethanol production due
to the challenge of efficiently converting woody feedstocks
into liquid biofuel.

Short rotation plantations of woody feedstocks are often
established on unimproved or abandoned farmland, due
to the relative ease of clearing and cultivating land that
was previously devoted to agriculture. The plantation

© 2013 Society of Chemical Industry and John Wiley & Sons, Ltd | Biofuels, Bioprod. Bioref. 7:582-601 (2013); DOI: 10.1002/bbb 687
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may be the only crop in the field, or it may be grown with
an intercrop. Tree-based intercropping systems feature
widely spaced tree rows (10 to 15 m apart) with annual
crops growing between established tree rows. Such sys-
tems diversify the rural landscape and provide economic
returns to producers whilst trees are becoming estab-
lished. They are also expected to store more carbon than
conventional cropping systems through two mechanisms:
(i) by increasing carbon storage in the biomass of planted
trees,” and (ii) by adding inputs of lignin-rich litter that
is slowly decomposed and thus stabilized as soil organic
carbon, which is consistent with the goals of soil carbon
sequestration.94 After 22 years, there was 12% more soil
organic carbon in a tree-based intercropping system
than an adjacent conventional agroecosystem in Guelph,
Ontario (Canada); the annual crop rotation in both sys-
tems was a corn-soybean-cereal rotation.

Woody feedstocks are well adapted for cool, temperate
climates. Twelve clones of fast-growing trees established
on abandoned farmland in southern Quebec, Canada,
accumulated biomass at rates of 66 to 72 t dry matter ha™
(hybrid poplar) and 62 to 68 t dry matter ha™! (willow)
after four growing seasons.”” In plantations, these woody
perennials grow optimally when given sufficient space to
avoid interspecific competition (around 40 000 willow ha™
and 2000 hybrid poplars ha™!), adequate NPK fertilization,
as well as weed and insect control.”?>%¢ Clone selection
is critical, as wood density, fiber content, fiber length,
and other feedstock characteristics important for heat
and power generation are strongly controlled by genetic
traits. The estimated clonal repeatability for wood density
and fiber length were much greater than for growth traits
(diameter at breast height, tree height).®”

The response of woody perennials to climate change must
be considered, due to the fact that some trees will grow for
more than a decade before biomass is harvested. Under
elevated CO, concentrations, there is significant increase in
biomass accumulation and lignin deposition in hybrid pop-
lar wood.”” Yet, elevated CO, and N fertilization did not
affect the calorific value of wood, which was 19.3 MJ kg’l.
Judicious use of N fertilizer enhances the energy produc-
tion per land area because the yields of woody biomass are
enhanced by 50% or more, compared to trees grown on
unfertilized land.”® Future climate scenarios also suggest
warmer, drier growing conditions, so the development of
new genotypes with high water use efficiency and water-
shed-scale management plans that consider the land and
water requirements of woody feedstocks is recommended.”’

The development of dedicated woody feedstocks for cel-
lulosic ethanol is still in its early days, although significant
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research investments are being made in both the USA
and Canada. Woody feedstocks may offer important ben-
efits for the environment and contribute significantly as
an alternative feedstock for energy production. Further
work is needed to develop policies that effectively manage
short rotation plantations in the context of climate change
and consider the hydrological implications of including
woody feedstocks at the landscape scale. The whole life
cycle of woody feedstock production (clone and site selec-
tion, management and production decisions, harvesting,
transport, and energy transformation) needs to be within
a regulatory framework where sustainability is a central
driver.

Sustainble solutions for feedstock
production systems

Feedstock production systems must demonstrate positive
net energy balances and be able to grow on land that is
marginal for food production. In addition, they must use
minimal amounts of water and where possible, increase
soil organic matter levels and stabilize soils against ero-
sion. Reducing energy consumption through use of
conservation tillage rather than conventional tillage and
utilizing crops, possibly as part of a rotation, that have
low water demands may be useful in some regions. For
example, sorghum can be used as a bioenergy crop in arid
and semi-arid lands as the water required for its produc-
tion is much lower than switchgrass and Miscanthus.”*'%°
1% studied grain sorghum (GS), high biomass
forage sorghum (FS), photoperiod-sensitive forage sor-
ghum (PS) under conventional and conservation tillage
conditions and found that PS under conservation tillage
produced the highest biomass and was the recommended
bioenergy crop. From the perspective of this review, the
material remaining after the seeds were removed, as a
food or feed material, would be of interest as a biofuel
feedstock.

Other factors can also improve plant growth while
reducing inputs and thereby contribute to the develop-
ment of low input, sustainable lignocellulosic production
systems.

Rocateli

Plant-growth-pomoting rhizobateria
(PGPR)

PGPR include bacteria in the soil near plant roots, on
the surface of plant root systems, in spaces between
root cells or inside specialized cells of root nodules.'?
PGPR increase plant growth through a broad range
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of mechanisms such as production of phytohormones
(directly stimulating aspects of plant development and
growth) or metal-chelating siderophores (making plant
nutrients, such as iron, more available) and disease sup-
pression through antibiosis.!”® Although a number of
PGPR mechanisms are now understood, there is still
much to discover regarding how bacteria-plant associa-
tions affect plant growth. At a time when we are looking to
plants to provide biofuels and other novel bioproducts,'**
while still feeding the world’s growing population, under-
standing mechanisms that can serve to increase overall
plant productivity is increasingly imperative.

PGPR-to-plant signals compounds

Lipochitooligosaccharides (LCOs), a group of N, fixing
PGPR, can alter the course of growth and development in
a range of plants.'® " Enhanced germination and seed-
ling growth, along with the mitogenic nature of LCOs,
suggest accelerated meristem activity. LCOs, isolated
from B. japonicum, accelerated seed germination, seed-
ling emergence, root growth and development in soybean
and non-leguminous plan‘[s,m’m6
greater when the plants were under some level of stress.
LCOs stimulated root growth in Medicago truncatula,'
accelerated flowering (a typical response to stress) and
increased yield when sprayed on tomatoes.'! Foliar appli-
cation of LCOs also induced resistance of soybean plants
to powdery mildew.!'? Given that LCOs induce defence
responses in Medicago cell cultures and roots,"® that LCOs
show structural similarity to chitin (they have a chitin
backbone), and that chitin induces defence responses in
plants, it is reasonable to hypothesize that LCOs induce
aspects of plant defence responses similar to chitin. These
defense mechanisms can aid biofuel feedstock crops in
resisting both biotic (pathogen) and abiotic (cold, drought,
etc.) stresses, leading to greater yields.

Bai et al. " isolated a PGPR, B. thuringiensis NEB 17,
from soybean root nodules and showed that it enhances
soybean nodulation and N, fixation when co-inoculated
with B. japonicum.*'® The liquid medium that was used
to grow NEB17 for plant growth stimulating materi-
als was shown to contain a 31 KDa peptide, now named
Thuricin-17"%""” which, when sprayed on leaves or applied
to roots, stimulates growth of corn and soybean, in a
manner similar to that caused by LCOs. '®° Thuricin-17
is not toxic to B. japonicum 532C."” Bacteriocins are
bacteria-produced peptides that are either bactericidal
or bacteristatic to specific bacterial strains that compete
most closely with the producer strains. Bacteriocins are
often isolated from bacteria found in food, such as strains

and these effects were
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of Bacillus.">° However, some bacteriocins have been iso-
lated from extracellular PGPR (ePGPR), such as Bacillus
thuringiensis subsp. kurstaki,'*! Pseudomonas spp.**

and the nodulating intracellular PGPR (iPGPR), such as
Rhizobium leguminosarum 248."* It has been postulated
that bacteriocins produced by PGPR provide a competi-
tive advantage to the producer strains'**and may enhance
nodule occupancy when the producer strain is one of the
rhizobia.!** Clearly, there are some previously unknown
mechanisms at play and these could be exploited in the
development of low-input biofuel feedstock production

systems.

Nitrogen fixers

Micro-organisms capable of biological nitrogen fixation
(BNF) are largely beneficial soil bacteria and include rhizo-
bia and free-living diazotrophs. These N,-fixing bacteria
are collectively considered to be PGPR and are often found
near, on, or within plant roots 02,125,126 The success of
bioethanol production from sugarcane in Brazil, has been
attributed to lower inputs of N fertilizer since up to 80% of
the plant N is derived from biological N,-fixation by associ-
ated PGPR."?”'?® The diazotrophs isolated from sugarcane
include Azospirillum and Acetobacter or Gluconacetobacter
species, as well as endophytic diazotrophs of the genera
Herbaspirillum and Burkholderia.'**'** Members of the
diazotrophic genus Azospirillum are important sources

of N, fixation and N transfer to many plants.”*® G. dia-
zotrophicus, the predominant diazotroph of sugarcane,

has also been shown to colonize rice, wheat, maize, and
Arabidopsis thaliana.®' Inoculation of Herbaspirillum sero-
pedicae onto rice seedlings increased N content by 30%,'**
while inoculation of Azospirillum lipoferum and A. bra-
silense, isolated from kallar grass, onto rice provided nearly
70% of fixed nitrogen.'* Potential utilization of BNF in the
growth of cellulosic feedstock crops would significantly
reduce N fertilizer and thus energy requirements associ-
ated with their production.

Mycorrhizae

Mycorrhizal fungi constitute a very ancient symbiosis
between higher plants and fungi.'** The relationship is

so well developed that the fungi often cannot grow in the
absence of the host plant.’*> The fungi improve the ability of
plants to take up soil P and Zn by effectively increasing root
surface area and their ability to take up low mobility nutri-
ents such as P.*® These fungi are present in almost all soils

of the world but selection for enhanced types and effective
inoculation strategies can improve crop yields."”” Phosphorus
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conservation is particularly important as peak extraction

of this nutrient is forecast for as little as a few decades from
now, which could place a strong limitation on biomass and
food crop production systems. Thus, biofuel production sys-
tems and very effective mycorrhizal systems, able to make
the most of this P, will be critical in the near future.

Biochar

Biochar is black, carbon-rich material produced when
organic matter is thermally cracked in an oxygen-limited
or oxygen-free environment (pyrolysis). The particles of
char produced this way contain primarily carbon and
inorganic matter (ash), are highly porous '*® and retain
nutrients and water that might otherwise be lost from the
root zone.’>* Biochar is valuable when used as a fuel,
carbon sink, or soil amendment'*"*> and a very promis-
ing technology for using it to make organic slow release
nitrogenous fertilizer has been developed and patented.'*?

Biochar has increased soil pH and nutrient availability
leading to crop yield improvements that persist for several
years after a single application."** ™ Nutrients contained
in and applied with biochar materials can be responsible
for short-term increases in crop growth.'*> The long-term
improvement in soil fertility arises from the fact that the
biomass thermal cracking process (pyrolysis) generates
stable compounds consisting of single and condensed ring
aromatic carbon with a high surface area per unit mass.*"
This surface becomes oxidized and cation exchange capac-
ity (CEC) develops over time and can lead to greater nutri-
ent retention in ‘aged’ as opposed to ‘fresh’ biochar. 1547
The resulting high CEC presumably captures positively
charged plant nutrients such as NH,", K, Ca’" and Mg2+
which are retained on the biochar surface and not lost
through volatilization (NH," — NH;) or leaching (K', Ca**
and possibly Mg®").!*® The binding of NH," to the biochar
surface is of particular interest because this can slow the
rate of nitrification (NH," — NO; ™) and hence the loss of
N,O and N, via denitrification. Biochar also binds PO by
surface adsorption,'® thus providing a mechanism for bet-
ter management of this key plant nutrient. Thus, biochar-
amended soils may require less fertilizer to achieve target
crop yields, leading to, for instance, less contamination of
surface and ground water by PO,>~ and NO;**"® and less
production of the greenhouse gas N,0.1*1¢

Good quality biochar is very porous, contains less
inorganic matter and can hold several times its weight in
water.*>'? Thus a field with 10 t ha™! of added biochar
might retain an additional 30 t ha™ of water following
a rainfall or irrigation event. This could be extremely
important to crops growing in water-limited areas and
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could also enhance the retention of N, S and P in soil and
reduce fertilizer requirements.

The mean residence time (MRT) of microbially proc-
essed soil organic carbon is as short as 30 years.'® In
contrast, biochar creates a carbon pool with high stabil-
ity.!®* MRTs of 6850 and 4035 years have been reported for
biochar in the Amazonia Dark Earth region'®>'** and 364
years for purposefully applied biochar in the field, nor-
malized for a mean annual temperature of 10 °C."° Thus,
biochar is very effective in the long-term sequestration of
carbon into soils.

Municipal solid waste as a source
of bioethanol production

Municipal solid waste (MSW) consists of combustible

and non-combustible wastes that come from household,
municipal, commercial and industrial sites.'%” In the UK,
500 kg of waste per capita are produced each year amount-
ing to 30 million tonnes of MSW annually.'*® These
produce large amounts of GHGs at dumping sites and
represent wasted energy.'®> Many countries including the
US have increased their efforts to use MSW via recycling,
thermo-chemical and biological conversions.

Logistic challenges in using
lignocellulosic feedstocks

The biomass-to-energy industry has been developing over
the past 30 years'’ and during this period many challenges
had to be overcome.'®® As the industry grows and matures,
many other challenges arise, including logistics. Logistics
is defined as ‘the art and science of obtaining, producing,
and distributing material and product in the proper place
and in proper quantities'® and plays a vital role in achiev-
ing operational excellence in all the types of industries,
including bioenergy. To fully understand the importance
of logistics in biomass, first it is required to understand the
different processes that are involved (Fig. 1).

\p Bicmass-to-Energy Supply Chain
Pre-
Cultivation Haevest e Refning
treatrment
— Transpartation )
p Storage s

Figure 1. Biomass-to-energy supply chain
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Figure 2. Logistic challenges

The biomass supply chain begins at cultivation and
includes land use and crop selection which can sig-
nificantly impact the expected yield and overall energy
efficiency.'’® Additionally, site selection will impact the
operational cost since the proximity of the feedstock to
processing plants has a direct impact on transportation
cost. The second step of the biomass-to-energy supply
chain is harvest; it must consider the direct relationships
between cultivation, storage, transportation and even con-
version which are all significant drivers in logistics cost.
Harvesting will be discussed in the next section. Following
harvest is pre-treatment where the first steps of biomass
conversion occurs and where the feedstock is transformed
for further downstream processing. During the pre-treat-
ment process, typically only including physical processes,
the properties of the biomass are modified using drying,
densification and fractionation. From a logistic point of
view, pre-treatment plays a key role in the supply chain; it
helps to improve the storage and transportation process by
increasing bulk density as well as improves the efficiency
at the refining stage.

As many studies have described,'”*"'7¢ logistics is a
major area of focus for development of the biomass-to-
energy value chain and is critical when considering the
wide spatial distribution of potential biomass, variable
moisture content, low bulk density, and short harvesting
window. The biggest challenges that need to be addressed

in the short term include pre-treatment processing,'’"'7

) 170-172
>

biomass handling (transportation and storage and

network design'’*"1® (Fig. 2).
Pre-treatment
Densification

Densification is the process that uses compression or com-
paction on the biomass to remove inter- and intra-particle
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voids.!”® From the perspective of logistics, densification
overcomes the low bulk density of the feedstock, which

is a major barrier for developing biomass as an energy
source.'”’ Increasing the density of the feedstock directly
impacts storage and transportation that are mainly based
on the volume of biomass to be handled.!”®
allows for feedstock uniformity,'’” improving the handling

Densification

efficiency, and process throughput (i.e. optimizing upload
time, storage handling efficiency, etc.).

Biomass handling

Biomass handling is divided into two elements transporta-
tion and storage.

Transportation

Transportation accounts for as much as 35-60% of the
biomass logistics cost.!”> Due to this major cost, opti-
mizing transportation requirements and even small
improvements in competitiveness can result in significant
reductions in overall operation costs. The type of feedstock
and method of pre-treatment will define the biomass bulk
density and the maximum handling capacity using differ-
ent transportation modules (truck, rail, ship, e‘[c.)178 and
the steps required within the system, before reaching its
destination. For example, truck loading and unloading
operation cycle time can play an important role in trans-
portation efficiency.'”! Sokhansanj and Hess'”' described
that the loading of a 36-bale truck may take 30-40 min.
By increasing the bulk density of the biomass, the han-
dling efficiencies can be improved but the cost to reformat
the biomass must be included in the final considera-

tion. Other factors such as trip distance, truck-carrying
capacity and fossil fuel consumption can have a negative
impact on local transport costs and logistics operations.'”
Ultimately, transport costs increase when the biomass
feedstock is dispersed over large areas requiring signifi-
cant road transport, but pre-treatment can be used to
reduce these costs.

Storage

Biomass storage and quality is directly impacted by its
moisture content which can in turn directly impact the
energy efficiency. For long-term storage of most bioenergy
feedstock, the moisture should be below 17.5% on a dry
weight basis. However, safe moisture content will depend
on the selected feedstock.!”® Biomass with a moisture
content between 40 and 60% is difficult to manage during
storage; wet crops (<60% moisture) are more susceptible
to microbial degradation and losses due to liquid effluent
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production during storage.”*'® Losses during wet stor-
age are higher than dry storage and drying biomass below
20% moisture is required to avoid large losses during stor-
age. Storage infrastructure can be a stronger determinant
of biomass loss than moisture content for hay collected
below 40% moisture'®® Additionally, proper slotting effi-
ciency (optimizing biomass storage according to its shape)
is important and circular biomass bales are not the best
option during storage; square bales have a better storage
performance.'”!

Network design

With many feedstock harvest locations the logistic opera-
tions tend to be a complex system that require a well-
designed network and a robust transportation system

to supply the bio-refinery. Based on biomass seasonality
and network design, the feedstock may need to be stored
in satellite locations for a period of time before its trans-
formation into an energy source. The transportation cost
will increase as a consequence of increasing distance and
increased steps required before reaching the refining step.
A poor network design will have a direct impact on the
bio-refinery operational cost and consequently its financial
performance.l”?

Most optimization models use the integrated biomass
supply and logistic (IBSAL) software as the primary opti-
mization tool.!”#1”® IBSAL is a time-dependent simulation
developed by the US Department of Energy as a tool for
analysing and optimizing complex biomass supply sys-
tems.® IBSAL is a powerful tool for evaluating the supply
chain from field to bio-refinery.”

Another technological tool that has been used for opti-
mizing the biomass supply chain are geographical infor-
mation systems (GIS), which enable the mapping of actual
road networks.'”? Figure 3 is an example of how GIS can
be used to define an optimal location for a large-scale
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Figure 3. Road network definition by GIS model

bio-refinery and potential satellite storage locations based

on biomass availability and network optimization.'*

Energy

Many studies have analyzed the energy consumption
throughout the supply chain. Table 1 summarizes the
different results from previous works mostly in wood
feedstock. Dijkman and Benders'®' calculated the energy
consumption of different processes in order to generate
electricity from wood (willow and poplar; energy inputs
for electricity from wood were given over a period of 20
years). The pre-treatment (drying and chipping) process
is the most energy consuming in the supply chain because
it is assumed that the initial moisture content is 50% and
includes the process to reduce this moisture content to an
optimal level of 15%. Transportation and fertilization are

Table 1. Energy consumption throughout the supply chain. Dijkman and Benders'®! (a) Benoit et al.'%?
calculated the energy consumed to generate 1 GJ of heat. (b) Valente et al.'°® Energy balance of a woody

biomass supply chain (transportation assumed at 30 km). (c) Valente et al.'®” Primary energy input for

18 251 m? of woody biomass harvested, the transportation was assumed for 64 km

Energy Consumption

Reference Year Feedstock Unit Cultivation Harvest Pre-treatment Refining Transport Total

Dijkman & Benders 2010 Wood MJ/ha 3,674 3,543 11,400 - 18,617

Benoit et al. (a) 2013 Eucalyptus  MJ/GJ 33.81 15.93 0.29 42.67 50

Benoit et al. (a) 2013 Eucalyptus  MJ/GJ 10.49 23.52 0.29 42.67 34

Valente et al. (b) 2011 Wood K Wh/m?3 10.46 4.22 17.8 11.92 32

Valente et al. (c) 2011 wood MJ/m?3 3.68 40.81 59.73 74.46 104
692 © 2013 Society of Chemical Industry and John Wiley & Sons, Ltd | Biofuels, Bioprod. Bioref. 7:582-601 (2013); DOI: 10.1002/bbb
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the two main drivers in the energy consumption for wood
chips combustion; the model assumed transportation of 80

km for the wood chips in the calculation.'®?

Biomass harvesting for
lignocellulosic energy crops

Cheap and efficient harvesting methods, a critical part of
the supply chain for using biomass as an energy source,
depend on the type of feedstock to be used as a fuel source
(wood, grasses, residues, or other materials). The first feed-
stocks used for biofuels to penetrate the market, such as
crop grains and wood pellets, relied on harvesting technolo-
gies taken directly or modified from existing agricultural
and forestry harvesting methods. Agricultural technologies
included a mower used to cut the forage, a baler to densify
and produce a transportable package and trucking for
transportation. Additional equipment was required depend-
ing on the need to reduce the moisture content of the final
product, including conditioners for crimping the mate-

rial, a hay rake for windrowing or turning the grass, and

a tedder to spread the grass. Traditional wood harvesting
methods include a feller-buncher to cut and gather several
trees at once, a skidder/forwarder to move logs from the for-
est to loading area, a loader/picker and truck/transport.'*>
Additional equipment and or personnel may be required for
delimbing and bucking the tree (cutting the log to size).

Traditional harvesting technologies
Forestry

The challenge with using traditional harvesting methods is
that the labor, energy consumption, and equipment costs
do not always make sense from an economic or energy
balance perspective when the end product is biofuels.
Alternative harvesting methods and equipment are slowly
being developed and are focused on four major feedstocks
for future biofuel development: purpose-grown grasses
(switchgrass, Miscanthus, etc.), short rotation plantation
species (willow and hybrid poplar), crop residues (corn-
sorghum stover/cereal straw), and forestry residues.'34186
Three systems described below are new technologies that
have reduced the cost and energy requirements of harvest-
ing forest residues, willow plantations and corn stover.

New harvesting technologies
Biobaler

The Biobaler (Anderson Group Co., Chesterville, Quebec)
was developed in 2005 as a willow harvesting system based
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on an agricultural baler. The original system was designed
to harvest plantation willows using a reinforced large
round baler."®* A cutter head was attached to the front of
the round baler, allowing simultaneous cutting and con-
ditioning of the woody material before ejecting it into the
baler chamber for compression and wrapping. Subsequent
variations of the original cutter included horizontal saw
blades, flail hammers, flail knives, and a flail shredder. The
various cutters were designed to operate on rough terrain
and allow harvesting in natural brush conditions, with
the cutter selected depending on the wood material to be
harvested. The Biobaler unit has a full width cutting size
of 2.6 m, and a length of up to 5.5 m requiring at least a
180 HP tractor to operate. The harvested bales weigh 500
to 600 kg, are 1.4 m in diameter (1.2 m wide) and have

a density of 220 kg/m?, with 50% moisture content. The
Biobaler offers a versatile alternative to harvest wild brush
and planted woody crops. The technology is helpful for
land management and provides a method to harvest other-
wise neglected biomass. The biobaler, has an ability to har-
vest woody material up to 10 cm in diameter, 7 m in height
and produces between 8 and 20 tonnes per hour (15 to 40
bales). It has operated in a range of harvesting locations
including plantations, abandoned and fallow land, field
edges, along roads, near watercourses, and understory
harvesting. Management of the trees can be controlled
through the selection of the cutters for the front end of the
biobaler, with some offering a clean cut (saw blades) and
others producing rough edges (flail cutting). Rough edges
on stumps can allow water to stagnate and slowly pen-
etrate the root system, resulting in detrimental stump and
root health. Such slow regrowth of the woody crop after
harvest is an advantage in some undergrowth manage-
ment systems (abandoned or fallow land, river bank brush
and understory vegetation in forests).

Willow harvester

Many willow harvesting systems are based on modifica-
tions to existing forage or sugar cane harvesters.'* In
Europe, the most effective machines are the modified
Claas Jaguar corn harvester (Harsewinkel, Germany)
and the Bender Harvester (Uppsala, Sweden). In North
America, a Case-New Holland forage harvester (FX-45;
Burr Ridge, IL, USA) has been modified for willow har-
vesting. The Claas harvester is a front head implement
with saw blades, two blades per row that cuts stems 5 to
10 cm from the ground. The Bender willow harvester uses
a single long, chain-saw cutting chain to cut the willow
stems and cuts and chips the willow biomass in one pass
using a 140HP tractor and harvester. The modified North
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American system uses a modified row-independent CNH
forage harvester to successfully harvest and chip willow
biomass.'®® The unit has been tested on both plantation
willow and hybrid poplar. Harvesting rates have been
reported of up to 2 ha h™! with stems up to 13 cm diameter.

These modified forage harvesters cut the plants into
chips, which are then blown into a wagon towed by the
harvester or into a wagon/truck that drives alongside the
harvester. A stem bundling system has been developed in
Europe but has limited application for bioenergy produc-
tion due to increased costs of transport and handling.
However, bundled stems have improved results when used
for transplanting of willow or when the biomass requires
longer storage times.'®® Overall the forage harvesting
equipment has been improving with harvest rates from 22
to 45 tons per hour (0.5to 2 hah™).

Stover/combine harvester

Corn/sorghum and cereal grain stover harvesting can
occur in at least three forms: a single pass with simultane-
ous grain and stover harvesting, a two-pass grain harvest-
ing and baling/forage harvesting of the stover windrow,
and a three-pass system with grain harvesting, mowing/
raking and baling/forage harvesting,'8>#7-19 All three
options have been used with varying levels of acceptance,
and all use the combine for grain harvest. The single pass
system consists of a modification to the combine with a
corn stem cutting or ear-snapping header to provide a sec-
ond stream of stover materials in addition to the grain.'**
This material is processed by a forage harvester type sys-
tem that blows the material into a wagon for transport off
the field. A modification to the single pass system is the
two-pass system where the combine harvests the grain and
provides a windrow of the stover for baling or forage har-
vesting in a second pass. The two-pass system is typically
used for cereal grain with the baling of wheat and barley
straw but is also used for corn stover.'® The three-pass
system uses the standard combine for corn seed harvest,
then a mower cuts the stalks and windrows the material
for baling or forage harvesting in the third step. Increased
energy advantages, of up to 55%, have been reported with
the single pass system.'”” Biomass removal efficiency has
ranged from 35 to 93% depending on the type of corn head
and head height used.'”* However, increased costs of the
machinery and increased moisture content can limit its
use. Placement of the stover into a windrow allows reduc-
tion in moisture content of the stover before baling, but
can increase soil contamination of the stover.

The incorporation of agricultural and forestry harvest-
ing methods into new biomass harvesting systems has
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improved harvest efficiency, which can greatly reduce the
time, cost, energy and manpower required for harvest.
Reducing the machinery requirements and number of
passes within the field/forest result in reduced labour costs
and lower harvesting costs, allowing a lower cost biomass
feedstock for downstream processes.

Summary

The development of an energy source that is sustainable
over the long term and will reduce our dependence on
fossil fuels is beneficial both to the environment and the
economy. Lignocellulosic feedstocks grown on land that

is marginal for agriculture, using carefully selected spe-
cies and production systems, have the potential to provide
biofuels that are energy eflicient, cost effective and envi-
ronmentally sound. Ongoing research and development

on suitable biomass feedstock is multifaceted and at scales
that range from the cellular to the plantation. Genetic engi-
neering is improving access to the carbohydrates stored

in plant cell walls and reducing the energy costs currently
associated with breaking down lignin. Perennial feedstocks
that have a high productivity, strong persistence and wide
adaptation to a variety of climatic and soil conditions are
being selected and developed. Proper utilization of munici-
pal solid waste can lead to economical biofuel production.
Production systems that produce a maximized amount of
fuel per unit of biomass, while maintaining crop sustaina-
bility with minimal inputs, are being developed. Enhanced
nitrogen fixation and phosphorus uptake by plants and
increased soil water and nutrient holding capacities are
being developed and have the potential to improve soil
fertility and allow lignocellulosic production systems to
produce biofuels sustainably over the long term. Logistics
play a vital role in achieving operational excellence in
bioenergy and is a major area of focus for development of
the biomass-to-energy value chain. Logistics are critical
when considering the wide spatial distribution of potential
biomass, variable moisture content, low bulk density, and
short harvesting window. The biggest challenges that need
to be addressed in the short term include pre-treatment
processing, harvesting, transportation and network design.
By way of recommendations we feel that:

1. We should develop plant genotypes with lignocellulosic
materials that are effectively and efficiently converted
into liquid fuels.

2. 'There is also a need to identify and genetically improve
biofuel feedstock crops that are best adapted to specific
geographical areas.
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3. There is a need to develop sustainable/low-input pro-
duction methods that serve to enhance the yields
of biofuel feedstock crops while also enhancing the
energy balance and carbon life-cycle analysis of these
crops.

4. Effective, low energy and safe harvest and storage prac-

tices need to be developed for biofuel feedstock crops.
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